यदि $2 + i$ समीकरण ${x^3} - 5{x^2} + 9x - 5 = 0$ का एक मूल हो तो अन्य मूल होंगे
$1$ और $2 - i$
$-1$ और $3 + i$
$0$ और $1$
$-1$ और $i - 2$
$\frac{{\log 5 + \log ({x^2} + 1)}}{{\log (x - 2)}} = 2$ के हलों की संख्या है
$k ( k \neq 0)$ के सभी पूर्णांक मानों, जिनके लिए $x$ में समीकरण $\frac{2}{ x -1}-\frac{1}{ x -2}=\frac{2}{ k }$ का कोई वास्तविक मूल नहीं है, का योग है .......... |
निम्नलिखित गुणों वाली एक तीन अंकों वाली संख्या पर विचार करे :
$I$. यदि इसके इकाई $(unit)$ और दहाई $(tens)$ अंकों को आपस में बदल दिया जाए तब संख्या $36$ से बढ़ जाएगी;
$II$. यदि इसके इकाई और सीवें $(hundredth)$ अंकों को बदल दिया जाए तो संख्या $198$ से घट जाएगी;
अब मान ले कि दहाई अंक तथा सौवें अंक को आपस में अदल - बदल दिया जाए, तो संख्या
यदि $\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$ तो
किसी खेत में पशुओं की जनसंख्या इस प्रकार परिवर्तित होती है: वर्ष $n+2$ तथा वर्ष $n$ की जनसंख्याओं के बीच का अंतर वर्ष $n+1$ की जनसंख्या समानुपातिक है। यहाँ $n$ एक प्राकृत संख्या है। यदि वर्ष $2010,2011$ और $2013$ में पशुओं की जनसंख्या क्रमानुसार $39,60$ और $123$ हो तो वर्ष $2012$ में जनसंख्या का मान होगा: