The polynomial equation $x^3-3 a x^2+\left(27 a^2+9\right) x+2016=0$ has
exactly one real root for any real $a$
three real roots for any real $a$
three real roots for any $a \geq 0$, and exactly one real root for any $a < 0$
three real roots for any $a \leq 0$, and exactly one real root for any $a > 0$
If $2 + i$ is a root of the equation ${x^3} - 5{x^2} + 9x - 5 = 0$, then the other roots are
Let $S=\left\{ x : x \in R \text { and }(\sqrt{3}+\sqrt{2})^{ x ^2-4}+(\sqrt{3}-\sqrt{2})^{ x ^2-4}=10\right\} \text {. }$ Then $n ( S )$ is equal to
Solution of the equation $\sqrt {x + 3 - 4\sqrt {x - 1} } + \sqrt {x + 8 - 6\sqrt {x - 1} } = 1$ is
For the equation $|{x^2}| + |x| - 6 = 0$, the roots are
Let $\alpha$ and $\beta$ be the roots of $x^2-x-1=0$, with $\alpha>\beta$. For all positive integers $n$, define
$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$
$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$
Then which of the following options is/are correct?
$(1)$ $a_1+a_2+a_3+\ldots . .+a_n=a_{n+2}-1$ for all $n \geq 1$
$(2)$ $\sum_{n=1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$
$(3)$ $\sum_{n=1}^{\infty} \frac{b_n}{10^n}=\frac{8}{89}$
$(4)$ $b=\alpha^n+\beta^n$ for all $n>1$