यदि $C = 2\cos \theta $, तब सारणिक $\Delta = \left| {\,\begin{array}{*{20}{c}}C&1&0\\1&C&1\\6&1&C\end{array}\,} \right|$ का मान होगा
$\frac{{\sin 4\theta }}{{\sin \theta }}$
$\frac{{2{{\sin }^2}2\theta }}{{\sin \theta }}$
$4{\cos ^2}\theta \,(2\cos \theta - 1)$
इनमें से कोई नहीं
माना सभी $\lambda \in R$ का समुच्चय $S$ है जिसके लिए रैखिक समीकरणों के निकाय $2 x-y+2 z=2 ; x-2 y+\lambda z=-4$ और $x+\lambda y+z=4$ का कोई हल नही है। तो समुच्चय $S:$
उन पूर्णाकों $x$ की संख्या क्या होगी जो $-3 x^4+\operatorname{det}\left[\begin{array}{ccc}1 & x & x^2 \\ 1 & x^2 & x^4 \\ 1 & x^3 & x^6\end{array}\right]=0$ को संतुष्ट करते हैं
$\left| {\,\begin{array}{*{20}{c}}{\sin x}&{\cos x}&{\cos x}\\{\cos x}&{\sin x}&{\cos x}\\{\cos x}&{\cos x}&{\sin x}\end{array}\,} \right| = 0$ के विभिन्न वास्तविक हलों की संख्या होगी $\left( {- \frac{\pi }{4} \le x \le \frac{\pi }{4}} \right)$
माना $A (1, \alpha), B (\alpha, 0)$ तथा $C (0, \alpha)$ शीर्षो वाले त्रिभुज का क्षेत्रफल $4$ वर्ग इकाई है। यदि बिन्दु $(\alpha,-\alpha),(-\alpha, \alpha)$ तथा $\left(\alpha^2, \beta\right)$ संरेखीय हो, तो $\beta$ का मान होगा
$\left| {\,\begin{array}{*{20}{c}}{a - 1}&a&{bc}\\{b - 1}&b&{ca}\\{c - 1}&c&{ab}\end{array}\,} \right| = $