${(\cos \alpha + \cos \beta )^2} + {(\sin \alpha + \sin \beta )^2} = $

  • A

    $4{\cos ^2}\frac{{\alpha - \beta }}{2}$

  • B

    $4{\sin ^2}\frac{{\alpha - \beta }}{2}$

  • C

    $4{\cos ^2}\frac{{\alpha + \beta }}{2}$

  • D

    $4{\sin ^2}\frac{{\alpha + \beta }}{2}$

Similar Questions

If $x = sec\, \phi - tan\, \phi$ & $y = cosec\, \phi + cot\, \phi$ then :

$\tan \alpha + 2\tan 2\alpha + 4\tan 4\alpha + 8\cot \,8\alpha = $

  • [IIT 1988]

If $A$ lies in the third quadrant and $3\,\tan A - 4 = 0,$ then $5\,\sin 2A + 3\,\sin A + 4\,\cos A = $

$cosec^2\theta $ = $\frac{4xy}{(x +y)^2}$ is true if and only if

If $\frac{\sqrt{2} \sin \alpha}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7}$ and $\sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}}$ $\alpha, \beta \in\left(0, \frac{\pi}{2}\right),$ then $\tan (\alpha+2 \beta)$ is equal to

  • [JEE MAIN 2020]