${(\cos \alpha + \cos \beta )^2} + {(\sin \alpha + \sin \beta )^2} = $

  • A

    $4{\cos ^2}\frac{{\alpha - \beta }}{2}$

  • B

    $4{\sin ^2}\frac{{\alpha - \beta }}{2}$

  • C

    $4{\cos ^2}\frac{{\alpha + \beta }}{2}$

  • D

    $4{\sin ^2}\frac{{\alpha + \beta }}{2}$

Similar Questions

$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{3\pi }}{7} =$

$\cos \frac{\pi }{5}\cos \frac{{2\pi }}{5}\cos \frac{{4\pi }}{5}\cos \frac{{8\pi }}{5} = $

$A, B, C$ are the angles of a triangle, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C - 2\cos A\,\cos B\,\cos C = $

Number of values of $ x \in \left[ {0,2\pi } \right]$ satisfying the equation $cotx - cosx = 1 - cotx. cosx$

The value of $\sum_{r-1}^{18} cos^2(5r)^o,$  where $x^o $ denotes the $x$ degree, is equals to