- Home
- Standard 11
- Mathematics
Basic of Logarithms
normal
The number of solution pairs $(x, y)$ of the simultaneous equations $\log _{1 / 3}(x+y)+\log _3(x-y)=2$ $2^{y^2}=512^{x+1}$ is
A
$0$
B
$1$
C
$2$
D
$3$
(KVPY-2017)
Solution
(b)
We have,
$\log _{1 / 3}(x+y)+\log _3(x-y)=2$
$2 y^2=512^{x+1}$
$\Rightarrow \log _{3^{-1}}(x+y)+\log _3(x-y)=2$
$\Rightarrow-\log _3(x+y)+\log _3(x-y)=2$
$\Rightarrow \quad \frac{x-y}{x+y}=3^2=9$
$\Rightarrow \quad x-y=9 x+9 y$
$\Rightarrow \quad-8 x=10 y \Rightarrow-4 x=5 y$
and $\quad 2^{y^2}=2^{9(x+1)}$
$\Rightarrow \quad y^2=9(x+1)$
$\begin{array}{cc}\Rightarrow & 16 x^2=225 x+225 \\ \Rightarrow & 16 x^2-225 x-225=0 \\ \Rightarrow & (16 x+15)(x-15)=0 \\ \Rightarrow & x=15,-\frac{15}{16}\end{array}$
$x=-\frac{15}{16}, y=\frac{3}{4}$ (not possible)
$\therefore$ Only one solution $(15,-12)$.
Standard 11
Mathematics