3 and 4 .Determinants and Matrices
normal

If $A$ is skew symmetric matrix of order $3$ and $X$ be another matrix of same order, then $|XA + AX^T|$ is (where $|P|$ denotes determinant of matrix $P$ )

A

$|X + X^T|$

B

$|A + X|$

C

$|A -X|$

D

$0$

Solution

$A^{T}=-A$

$\left(\mathrm{XA}+\mathrm{AX}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}} \mathrm{X}^{\mathrm{T}}+\mathrm{XA}^{\mathrm{T}}$

$=-\mathrm{AX}^{\mathrm{T}}-\mathrm{XA}$

$=-\left(\mathrm{AX}^{\mathrm{T}}+\mathrm{XA}\right)$

$\left|\left(\mathrm{XA}+\mathrm{AX}^{\mathrm{T}}\right)^{\mathrm{T}}\right|=\left|-\left(\mathrm{XA}+\mathrm{AX}^{\mathrm{T}}\right)\right|$

$\left|\mathrm{XA}+\mathrm{AX}^{\mathrm{T}}\right|=-\left|\mathrm{XA}+\mathrm{AX}^{\mathrm{T}}\right|$

$\left|\mathrm{XA}+\mathrm{AX}^{\mathrm{T}}\right|=0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.