જો $n$ અવલોકનો $x_1, x_2,.....x_n$ એવા છે કે જેથી $\sum\limits_{i = 1}^n {x_i^2} = 400$ અને $\sum\limits_{i = 1}^n {{x_i}} = 100$ થાય તો નીચેનામાંથી $n$ ની શકય કિમત મેળવો.
$18$
$20$
$24$
$27$
$ \bar x , M$ અને $\sigma^2$ એ $n$ અવલોકનો $x_1 , x_2,...,x_n$ અને $d_i\, = - x_i - a, i\, = 1, 2, .... , n$, જ્યાં $a$ એ કોઈ પણ સંખ્યા હોય તે માટે અનુક્રમે મધ્યક બહુલક અને વિચરણ છે
વિધાન $I$: $d_1, d_2,.....d_n$ નો વિચરણ $\sigma^2$ થાય
વિધાન $II$ : $d_1 , d_2, .... d_n$ નો મધ્યક અને બહુલક અનુક્રમે $-\bar x -a$ અને $- M - a$ છે
$x$ ના $15$ અવલોકનોના પ્રયોગમાં $\sum x^2 = 2830,\, \sum x = 170 $આ પરિણામ મળે છે. એક અવલોકન $20$ ખોટું મળે છે અને તેના સ્થાને સાચું અવલોકન $30$ મૂકવામાં આવે તો સાચું વિરણ કેટલું થાય ?
$2n$ અવલોકનમાં અડધા અવલોકનો $'a'$ અને બાકીના અવલોકનો $' -a'$ છે જો આ અવલોકનોનું પ્રમાણિત વિચલન $2$ હોય તો $\left| a \right|$ =
જો $n$ અવલોકનો $x_1, x_2, …… x_n$ નો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $\bar x$અને $\sigma$ હોય તો અવલોકનોના વર્ગનો સરવાળો કેટલો થાય ?
વિધાન $- 1 : $ પ્રથમ $n$ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{4}$છે.
વિધાન $ - 2$ : પ્રથમ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $\frac{{n(n\,\, + \,\,1)}}{2}$અને પ્રથમ $n$ પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(n\, + \,\,1)\,(2n\, + \,\,1)}}{6}$ છે.