- Home
- Standard 11
- Mathematics
13.Statistics
medium
$3,7,12, a, 43-a$ નું વિચરણ, એક પ્રાકૃતિક સંખ્યા થાય તેવા $a \in N$ ના મૂલ્યોની સંખ્યા $\dots\dots\dots$ છે. (મધ્યક $=13$)
A
$0$
B
$2$
C
$5$
D
અનંત
(JEE MAIN-2022)
Solution
Mean $=13$
Variance $=\frac{9+49+144+ a ^{2}+(43- a )^{2}}{5}-13^{2} \in N$
$\Rightarrow \frac{2 a^{2}-a+1}{5} \in N$
$\Rightarrow 2 a^{2}-a+1-5 n=0$ must have solution as natural numbers
its $D=40 n-7$ always has $3$ at unit place
$\Rightarrow D$ can't be perfect square
So, a can't be integer.
Standard 11
Mathematics