$3,7,12, a, 43-a$ નું વિચરણ, એક પ્રાકૃતિક સંખ્યા થાય તેવા $a \in N$ ના મૂલ્યોની સંખ્યા $\dots\dots\dots$ છે.  (મધ્યક $=13$)

  • [JEE MAIN 2022]
  • A

    $0$

  • B

    $2$

  • C

    $5$

  • D

    અનંત

Similar Questions

જો વિતરણનું દરેક અવલોકન જેનું પ્રમાણિત વિચલન $\sigma$, એ $\lambda$, જેટલું વધતું હોય તો નવા અવલોકનોનું વિચરણ શોધો.

$2n$ અવલોકનની એક શ્રેણી આપેલ છે,તે પૈકી $n$ અવલોકન $a$ છે અને બાકીના અવલોકન $-a$ છે.જો પ્રમાણિત વિચલન $2$ હોય તો $|a| =$    

  • [AIEEE 2004]

ધારો કે $5$ અવલોકનો $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ નાં મધ્યક અને વિચરણ અનુક્રમે $\frac{24}{5}$ અને $\frac{194}{25}$ છે.જો પ્રથમ $4$ અવલોકનોમાં મધ્યક અને વિચરણ અનુક્રમે $\frac{7}{2}$ અને $a$ હોય,તો $\left(4 a+x_{5}\right)=\dots\dots$

  • [JEE MAIN 2022]

જે $10$ પ્રાકૃતિક સંખ્યાઓ $1, 1, 1,...., 1,k$ નું વિચરણ $10$ કરતા ઓછું હોય, તો $k$ની શક્ય મહત્તમ કિંમત ...... છે.

  • [JEE MAIN 2021]

$y_1$ , $y_2$ , $y_3$ ,..... $y_n$ એ $n$ અવલોકનો છે ${w_i} = l{y_i} + k\,\,\forall \,\,i = 1,2,3.....,n,$ જ્યાં $l$ , $k$ એ અચળો છે જો $y_i's$ નો મધ્યક $48$ અને તેમનો પ્રમાણિત વિચલન $12$ અને $w_i's$ નો મધ્યક $55$ અને પ્રમાણિત વિચલન $15$ હોય તો $l$ અને $k$ ની કિમત મેળવો .