- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
normal
Let $a, b, c, d$ be numbers in the set $\{1,2,3,4,5,6\}$ such that the curves $y=2 x^3+a x+b$ and $y=2 x^3+c x+d$ have no point in common. The maximum possible value of $(a-c)^2+b-d$ is
A
$0$
B
$5$
C
$30$
D
$36$
(KVPY-2012)
Solution
(b)
We have,
$y=2 x^3+ a x +b$
$y=2 x^3+c x+ d$
$\text { From Eqs. (i) and (ii), we get }$
$\quad 2 x^3+a x+b=2 x^3+c x+ d$
$\Rightarrow \quad(a-c) x=(d-b)$
Since, Eqs. (i) and (ii) have no common
point.
$\therefore \quad(a-c) x \neq(d-b)$
If $(a-c)=0$ and $(d-b) \neq 0$
$\therefore$ Maximum value of $(a-c)^2+(b-d)$
$=0+(b-d)$
$=6-1=5 \quad[\because b, d \in\{1,2,3,4,5,6\}$
Standard 11
Mathematics