Gujarati
Hindi
4-2.Quadratic Equations and Inequations
normal

Let $a, b, c, d$ be numbers in the set $\{1,2,3,4,5,6\}$ such that the curves $y=2 x^3+a x+b$ and $y=2 x^3+c x+d$ have no point in common. The maximum possible value of $(a-c)^2+b-d$ is

A

$0$

B

$5$

C

$30$

D

$36$

(KVPY-2012)

Solution

(b)

We have,

$y=2 x^3+ a x +b$

$y=2 x^3+c x+ d$

$\text { From Eqs. (i) and (ii), we get }$

$\quad 2 x^3+a x+b=2 x^3+c x+ d$

$\Rightarrow \quad(a-c) x=(d-b)$

Since, Eqs. (i) and (ii) have no common

point.

$\therefore \quad(a-c) x \neq(d-b)$

If $(a-c)=0$ and $(d-b) \neq 0$

$\therefore$ Maximum value of $(a-c)^2+(b-d)$

$=0+(b-d)$

$=6-1=5 \quad[\because b, d \in\{1,2,3,4,5,6\}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.