Let $a, b, c, d$ be numbers in the set $\{1,2,3,4,5,6\}$ such that the curves $y=2 x^3+a x+b$ and $y=2 x^3+c x+d$ have no point in common. The maximum possible value of $(a-c)^2+b-d$ is

  • [KVPY 2012]
  • A

    $0$

  • B

    $5$

  • C

    $30$

  • D

    $36$

Similar Questions

If the roots of ${x^2} + x + a = 0$exceed $a$, then

If$\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$, then

  • [IIT 1987]

If $a, b, c, d$ and $p$ are distinct real numbers such that $(a^2 + b^2 + c^2)\,p^2 -2p\, (ab + bc + cd) + (b^2 + c^2 + d^2)  \le 0$, then

  • [AIEEE 2012]

How many positive real numbers $x$ satisfy the equation $x^3-3|x|+2=0$ ?

  • [KVPY 2009]

If the product of roots of the equation ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ is $7$, then its roots will real when

  • [IIT 1984]