4-2.Quadratic Equations and Inequations
normal

જો $\alpha ,\beta$ એ સમીકરણ $x^2 -ax + b = 0$ ના ઉકેલો હોય અને $\alpha^n + \beta^n = V_n$, હોય તો 

A

$V_{n+1} = aV_n + bV_{n-1}$

B

$V_{n+1} = aV_n + aV_{n-1}$

C

$V_{n+1} = aV_n -bV_{n-1}$

D

$V_{n+1} = aV_{n-1} -bV_n$

Solution

$\mathrm{x}^{2}-\mathrm{ax}+\mathrm{b}=0$ has roots $\alpha, \beta$

Then $\alpha+\beta=\mathrm{a}, \alpha \beta=\mathrm{b}, \mathrm{Now}$

$ \mathrm{v}_{\mathrm{n}+1} =\alpha^{\mathrm{n}+1}+\beta^{\mathrm{n}+1} $ 

$=(\alpha+\beta)\left(\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}\right) $ 

$-\alpha \beta^{\mathrm{n}}-\beta \mathrm{a}^{\mathrm{n}} $ 

$=(\alpha+\beta)\left(\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}\right)-\alpha \beta\left(\alpha^{\mathrm{n}-1}+\beta^{\mathrm{n}-1}\right) $ 

$ \mathrm{v}_{\mathrm{n}+1} =\mathrm{av}_{\mathrm{n}}-\mathrm{b} \mathrm{v}_{\mathrm{n}-1} $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.