If $\frac{3+i \sin \theta}{4-i \cos \theta}, \theta \in[0,2 \pi],$ is a real number, then an argument of $\sin \theta+\mathrm{i} \cos \theta$ is

  • [JEE MAIN 2020]
  • A

    $-\tan ^{-1}\left(\frac{3}{4}\right)$

  • B

    $\tan ^{-1}\left(\frac{4}{3}\right)$

  • C

    $\pi-\tan ^{-1}\left(\frac{4}{3}\right)$

  • D

    $\pi-\tan ^{-1}\left(\frac{3}{4}\right)$

Similar Questions

Let $\bar{z}$ denote the complex conjugate of a complex number $z$ and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation

$\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ is. . . . . .

  • [IIT 2022]

If $z$ is a complex number, then $(\overline {{z^{ - 1}}} )(\overline z ) = $

If the conjugate of $(x + iy)(1 - 2i)$ be $1 + i$, then

$z_1$ and $z_2$ are two complex numbers such that $|z_1 + z_2|$ = $1$ and $\left| {z_1^2 + z_2^2} \right|$ = $25$ , then minimum value of $\left| {z_1^3 + z_2^3} \right|$ is

If $|{z_1}|\, = \,|{z_2}|$ and $amp\,{z_1} + amp\,\,{z_2} = 0$, then