Let $\alpha$ and $\beta$ be two real numbers such that $\alpha+\beta=1$ and $\alpha \beta=-1 .$ Let $p _{ n }=(\alpha)^{ n }+(\beta)^{ n },p _{ n -1}=11$ and $p _{ n +1}=29$ for some integer $n \geq 1 .$ Then, the value of $p _{ n }^{2}$ is .... .

  • [JEE MAIN 2021]
  • A

    $162$

  • B

    $324$

  • C

    $648$

  • D

    $424$

Similar Questions

Suppose $m, n$ are positive integers such that $6^m+2^{m+n} \cdot 3^w+2^n=332$. The value of the expression $m^2+m n+n^2$ is

  • [KVPY 2010]

Consider the equation ${x^2} + \alpha x + \beta  = 0$ having roots $\alpha ,\beta $ such that $\alpha  \ne \beta $ .Also consider the inequality $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ ,then

The number of solutions, of the equation $\mathrm{e}^{\sin x}-2 e^{-\sin x}=2$ is

  • [JEE MAIN 2024]

The number of real roots of the equation $5 + |2^x - 1| = 2^x(2^x - 2)$ is

  • [JEE MAIN 2019]

The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be