જો $\alpha , \beta , \gamma$ એ સમીકરણ $x^3 + qx -r = 0$ ના ઉકેલો હોય તો ક્યાં સમીકરણના ઉકેલો $\left( {\beta \gamma + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha + \frac{1}{\beta }} \right),\,\left( {\alpha \beta + \frac{1}{\gamma }} \right)$ થાય ?
$(r + 1)x^3 -q(r + 1)x^2 -r^3 = 0$
$rx^3 -q(r + 1)x^2 -(r + 1)^3 = 0$
$x^3 + qx -r = 0$
None of these
જો $x$ કોઇ વાસ્તવિક સંખ્યા હોય તો $\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}$ ની મહતમ કિંમત . . . હોય . .
સમીકરણ $x|x+5|+2|x+7|-2=0$ ના વાસ્તવિક ઉકેલોની સંખ્યા ............ છે.
જો સમીકરણ ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ ના બીજનો ગુણાકાર $7$ હોય તો તેમના બીજ વાસ્તવિક છે કે જયાં
સમીકરણ $2^{x + 2} 27^{x/(x - 1)} = 9$ ના બીજ મેળવો.
સમીકરણ ${x^{{{\log }_x}{{(1 - x)}^2}}} = 9\,\,$ નો ઉકેલગણ.......છે.