જો $\alpha , \beta , \gamma$ એ સમીકરણ $x^3 + qx -r = 0$ ના ઉકેલો હોય તો ક્યાં સમીકરણના ઉકેલો $\left( {\beta \gamma + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha + \frac{1}{\beta }} \right),\,\left( {\alpha \beta + \frac{1}{\gamma }} \right)$ થાય ?
$(r + 1)x^3 -q(r + 1)x^2 -r^3 = 0$
$rx^3 -q(r + 1)x^2 -(r + 1)^3 = 0$
$x^3 + qx -r = 0$
None of these
જો સમીકરણ ${x^2} + \alpha x + \beta = 0$ ના બીજો $\alpha ,\beta $ એવા મળે કે જેથી $\alpha \ne \beta $ અને અસમતા $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ હોય તો
સમીકરણ $x^{2016} -x^{2015} + x^{1008} + x^{1003} + 1 = 0,$ ના કેટલા સમેય ઉકેલો મળે ?
જો $S$ એ બધા $\alpha \in R$ નો ગણ છે કે જેથી $cos\,2 x + \alpha \,sin\, x = 2\alpha -7$ ને ઉકેલગણ મળે તો $S$ =
જો $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5,\,$ તો $\,\,{\rm{x = \ldots }}..{\rm{ }}$
જો $y = \sqrt {\frac{{(x + 1)(x - 3)}}{{(x - 2)}}} $, તો $y$ પણ વાસ્તવિક કિમંત ધરાવે તેના માટે $x$ ની વાસ્તવિક કિમંતો . . . .