જો $\alpha , \beta , \gamma$ એ સમીકરણ $x^3 + qx -r = 0$ ના ઉકેલો હોય તો ક્યાં સમીકરણના ઉકેલો $\left( {\beta \gamma + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha + \frac{1}{\beta }} \right),\,\left( {\alpha \beta + \frac{1}{\gamma }} \right)$ થાય ?
$(r + 1)x^3 -q(r + 1)x^2 -r^3 = 0$
$rx^3 -q(r + 1)x^2 -(r + 1)^3 = 0$
$x^3 + qx -r = 0$
None of these
સમીકરણ $x|x+5|+2|x+7|-2=0$ ના વાસ્તવિક ઉકેલોની સંખ્યા ............ છે.
જો સમીકરણ $\frac{1}{x} + \frac{1}{{x - 1}} + \frac{1}{{x - 2}} = 3{x^3}$ ને $k$ વાસ્તવિક ઉકેલો હોય તો $k$ ની કિમત મેળવો
જો $a \in R$ હોય અને સમીકરણ $ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$ ને પૂર્ણાંક ઉકેલ ન હોય તો $a$ શકય કિંમતો . . . અંતરાલમાં હોય . .
સમીકરણ $|x{|^2}$-$3|x| + 2 = 0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.
જો ${\rm{x}}$ વાસ્તવિક હોય , તો $\,\frac{{3{x^2} + \,9x\, + \,17}}{{3{x^2}\, + \,9x\, + \,7}}$ નું મહતમ મૂલ્ય કેટલું થાય ?