If $x$ be real, then the minimum value of ${x^2} - 8x + 17$ is
$-1$
$0$
$1$
$2$
Let $\alpha$ and $\beta$ be the roots of $x^2-x-1=0$, with $\alpha>\beta$. For all positive integers $n$, define
$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$
$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$
Then which of the following options is/are correct?
$(1)$ $a_1+a_2+a_3+\ldots . .+a_n=a_{n+2}-1$ for all $n \geq 1$
$(2)$ $\sum_{n=1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$
$(3)$ $\sum_{n=1}^{\infty} \frac{b_n}{10^n}=\frac{8}{89}$
$(4)$ $b=\alpha^n+\beta^n$ for all $n>1$
Consider the following two statements
$I$. Any pair of consistent liner equations in two variables must have a unique solution.
$II$. There do not exist two consecutive integers, the sum of whose squares is $365$.Then,
If $\alpha , \beta $ are the roots of the equation $x^2 - 2x + 4 = 0$ , then the value of $\alpha ^n +\beta ^n$ is
The number of real solution of equation $(\frac{3}{2})^x = -x^2 + 5x-10$ :-
The locus of the point $P=(a, b)$ where $a, b$ are real numbers such that the roots of $x^3+a x^2+b x+a=0$ are in arithmetic progression is