8. Sequences and Series
normal

જો $\log _{10} 2, \log _{10} (2^x + 1), \log _{10} (2^x + 3)$ સમાંતર શ્રેણીમાં હોય તો 

A

$x = 0$

B

$x = 1$

C

$x = \log _{10} 2$

D

$x = \frac{1}{2} \log _2 5$

Solution

If $a, b, c$ are in $AP$ then $2 b=a+c$

$\Rightarrow 2 \log _{10}\left(2^{x}-1\right)=\log _{10} 2+\log _{10}\left(2^{x}+3\right)$

$\Rightarrow \log _{10}\left(2^{x}-1\right)^{2}=\log _{10} 2\left(2^{x}+3\right)$

$\Rightarrow \log _{10}\left(2^{2 x}+1-2^{x+1}\right)=\log _{10}\left(2^{x+1}+6\right)$

$\Rightarrow 2^{2 x}+1-2^{x+1}=2^{x+1}+6$

$\Rightarrow 2^{2 x}-2^{x+2}-5=0$

Take, $2^{x}=y$

$\Rightarrow y^{2}-4 y-5=0$

$\Rightarrow(y-5)(y+1)=0$

$\Rightarrow y=5,-1$

$\because y>0 \Rightarrow y=5$

$\Rightarrow 2^{x}=5$

$\Rightarrow x=\log _{2} 5$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.