- Home
- Standard 11
- Mathematics
8. Sequences and Series
normal
જો $\log _{10} 2, \log _{10} (2^x + 1), \log _{10} (2^x + 3)$ સમાંતર શ્રેણીમાં હોય તો
A
$x = 0$
B
$x = 1$
C
$x = \log _{10} 2$
D
$x = \frac{1}{2} \log _2 5$
Solution
If $a, b, c$ are in $AP$ then $2 b=a+c$
$\Rightarrow 2 \log _{10}\left(2^{x}-1\right)=\log _{10} 2+\log _{10}\left(2^{x}+3\right)$
$\Rightarrow \log _{10}\left(2^{x}-1\right)^{2}=\log _{10} 2\left(2^{x}+3\right)$
$\Rightarrow \log _{10}\left(2^{2 x}+1-2^{x+1}\right)=\log _{10}\left(2^{x+1}+6\right)$
$\Rightarrow 2^{2 x}+1-2^{x+1}=2^{x+1}+6$
$\Rightarrow 2^{2 x}-2^{x+2}-5=0$
Take, $2^{x}=y$
$\Rightarrow y^{2}-4 y-5=0$
$\Rightarrow(y-5)(y+1)=0$
$\Rightarrow y=5,-1$
$\because y>0 \Rightarrow y=5$
$\Rightarrow 2^{x}=5$
$\Rightarrow x=\log _{2} 5$
Standard 11
Mathematics