જો શ્રેણીના $n $ પદોનો સરવાળો $3n^2 + 4n$ ; થાય, તો તે કઈ શ્રેણી હોય ?

  • A

    સમાંતર શ્રેણી

  • B

    સમગુણોત્તર શ્રેણી

  • C

    સ્વરિત શ્રેણી

  • D

    આપેલ પૈકી એક પણ નહિ

Similar Questions

જો સમાંતર શ્રેણીનું $p$ મું પદ $q$ અને તેનું $q$ મું પદ $p$ હોય, તો તેનું $(p + q)$ મું પદ કયું હોય ?

એક માણસ $4500$ ચલણી નોટોની ગણતરી કરે છે. ધારો કે $a_n $ નોટોની સંખ્યા દર્શાવે છે. તે $n$ મિનીટમાં ગણતરી કરે છે. જો $a_1$ = $a_2$ = … = $a_1$0 $= 150$ અને $a_{10}, a_{11},.....$  સમાંતર શ્રેણીના સામાન્ય તફાવત $-2$  સાથે હોય, તો તેના દ્વારા બધી નોટોની ગણતરી કરવા માટે લાગતો સમય કેટલા .............. મિનિટ હશે ?

$a_1$, $a_2$, $a_3$, ......., $a_{100}$ સમાંતર શ્રેણીમાં છે. જ્યાં $a_1 = 3$ અને ${S_p}\, = \,\sum\limits_{i\, = \,1}^p {{a_i},\,1\,\, \le \,\,p\,\, \le \,\,100.} $ છે. કોઈ પણ પૂર્ણાક $n$ માટે $m = 5n$ લો. જો $S_m/S_n$ એ $n$ ઉપર આધારીત ન હોય તો $a_2= ......$

વધતી સમાંતર શ્રેણીમાં ચાર જુદા જુદા પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો બધી જ સંખ્યાઓનો ગુણાકાર કેટલો થાય ?

સમાંતર શ્રેણીનું $r$ મું પદ $T_r$ લો.$ r = 1, 2, 3, ….$ માટે. જો કેટલાક ધન પૂર્ણાકો $m, n$ માટે

${{\text{T}}_{\text{m}}}\,=\,\,\frac{1}{n}\,$ અને ${{\text{T}}_{\text{n}}}\,=\,\frac{\text{1}}{\text{m}}\text{,}$ હોય,તો ${{\text{T}}_{\text{mn}}}\text{ }......$