If $\frac{{\cos x}}{a} = \frac{{\cos (x + \theta )}}{b} = \frac{{\cos (x + 2\theta )}}{c} = \frac{{\cos (x + 3\theta )}}{d} \, ,$ then $\left( {\frac{{a + c}}{{b + d}}} \right)$ is equal to :-
$\frac{a}{d}$
$\frac{c}{d}$
$\frac{b}{c}$
$\frac{d}{a}$
The value of $x$ that satisfies the relation $x = 1 - x + x^2 - x^3 + x^4 - x^5 + ......... \infty$
If $\alpha$, $\beta$,$\gamma$ are positive number such that $\alpha + \beta = \pi$ and $\beta + \gamma = \alpha$, then $tan\ \alpha$ is equal to - (where $\gamma \ne n\pi ,n \in I$ )
If $(\sec A + \tan A)\,(\sec B + \tan B)\,(\sec C + \tan C)$ $ = \,(\sec A - \tan A)\,(\sec B - \tan B)\,(\sec C - \tan C),$ then each side is equal to
$\sqrt {2 + \sqrt {2 + 2\cos 4\theta } } = $
If $A + B + C = \frac{\pi }{2}$ ,then value of $tanA\,\, tanB + tanB\,\, tanC + tanC\,\, tanA$ is