The expression $[1 - sin (3\pi - \alpha ) + cos (3\pi + \alpha )]$ $\left[ {1\,\, - \,\,\sin \,\left( {\frac{{3\,\pi }}{2}\,\, - \,\,\alpha } \right)\,\, + \,\,\cos \,\left( {\frac{{5\,\pi }}{2}\,\, - \,\,\alpha } \right)} \right]$ when simplified reduces to :

  • A

    $sin \,2\alpha$

  • B

    $- sin\, 2\alpha$

  • C

    $1 - sin\, 2\alpha$

  • D

    $1 + sin\, 2\alpha$

Similar Questions

Prove that: $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$

If $\cos \theta = \frac{1}{2}\left( {a + \frac{1}{a}} \right),$then the value of $\cos 3\theta $is

$\frac{{\sqrt 2 - \sin \alpha - \cos \alpha }}{{\sin \alpha - \cos \alpha }} = $

$\frac{1}{{\tan 3A - \tan A}} - \frac{1}{{\cot 3A - \cot A}} = $

$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi = $