જો $\frac{{\cos x}}{a} = \frac{{\cos (x + \theta )}}{b} = \frac{{\cos (x + 2\theta )}}{c} = \frac{{\cos (x + 3\theta )}}{d} \, ,$ હોય તો  $\left( {\frac{{a + c}}{{b + d}}} \right)$ = 

  • A

    $\frac{a}{d}$

  • B

    $\frac{c}{d}$

  • C

    $\frac{b}{c}$

  • D

    $\frac{d}{a}$

Similar Questions

$\frac{{\tan {{70}^o} - \tan {{20}^o}}}{{\tan {{50}^o}}} = $

જો $\sin \alpha = \frac{{ - 3}}{5},$ કે જ્યાં $\pi < \alpha < \frac{{3\pi }}{2},$ તો $\cos \frac{1}{2}\alpha = $

જો $A, B, C $ એ ધન લઘુકોણ હોય તો $A + B + C = \pi $ અને $\cot A\,\cot \,B\,\cot \,C = K,$ તો

$\frac{{\sin 3A - \cos \left( {\frac{\pi }{2} - A} \right)}}{{\cos A + \cos (\pi + 3A)}} = $

${\sin ^2}\frac{\pi }{8} + {\sin ^2}\frac{{3\pi }}{8} + {\sin ^2}\frac{{5\pi }}{8} + {\sin ^2}\frac{{7\pi }}{8} = $