3.Trigonometrical Ratios, Functions and Identities
normal

જો $\frac{{\cos x}}{a} = \frac{{\cos (x + \theta )}}{b} = \frac{{\cos (x + 2\theta )}}{c} = \frac{{\cos (x + 3\theta )}}{d} \, ,$ હોય તો  $\left( {\frac{{a + c}}{{b + d}}} \right)$ = 

A

$\frac{a}{d}$

B

$\frac{c}{d}$

C

$\frac{b}{c}$

D

$\frac{d}{a}$

Solution

Correct Answer – C

For each of the ratios be $1 / k$.

$\frac{a+c}{b+d}=\frac{k \cos x+k \cos (x+2 B)}{k \cos (x+\theta)+k \cos (x+3 \theta)}$

$=\frac{2 \cos (x+\theta) \cos \theta}{2 \cos (x+2 \theta) \cos \theta}$

$=\frac{\cos (x+\theta)}{\cos (x+2 \theta)}=\frac{b}{c}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.