3 and 4 .Determinants and Matrices
normal

If $A$, $B$ and $C$ are square matrices of order $3$ such that $A = \left[ {\begin{array}{*{20}{c}}   x&0&1 \\    0&y&0 \\    0&0&z  \end{array}} \right]$ and $\left| B \right| = 36$, $\left| C \right| = 4$,  $\left( {x,y,z \in N} \right)$ and $\left| {ABC} \right| = 1152$ then the minimum value of $x + y + z$ is

A

$6$

B

$8$

C

$10$

D

$12$

Solution

$|A|=x y z$

$|A B C|=x y z \times 36 \times 4=1152$

$x y z=8$

$\frac{x+y+z}{3} \geq \sqrt[3]{8}$

$x+y+z \geq 6$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.