If $A$, $B$ and $C$ are square matrices of order $3$ such that $A = \left[ {\begin{array}{*{20}{c}} x&0&1 \\ 0&y&0 \\ 0&0&z \end{array}} \right]$ and $\left| B \right| = 36$, $\left| C \right| = 4$, $\left( {x,y,z \in N} \right)$ and $\left| {ABC} \right| = 1152$ then the minimum value of $x + y + z$ is
$6$
$8$
$10$
$12$
The value of $\lambda $ for which the system of equations $2x - y - z = 12,$ $x - 2y + z = - 4,$ $x + y + \lambda z = 4$ has no solution is
The determinant $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ is not divisible by
If $\left| {\begin{array}{*{20}{c}}
{^9{C_4}}&{^9{C_5}}&{^{10}{C_r}} \\
{^{10}{C_6}}&{^{10}{C_7}}&{^{11}{C_{r + 2}}} \\
{^{11}{C_8}}&{^{11}{C_9}}&{^{12}{C_{r + 4}}}
\end{array}} \right| = 0$ then $r$ is equal to
The number of real values of $\lambda $ for which the system of linear equations $2x + 4y - \lambda z = 0$ ;$4x + \lambda y + 2z = 0$ ; $\lambda x + 2y+ 2z = 0$ has infinitely many solutions, is
If $-9 $ is a root of the equation $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$ then the other two roots are