If $A$, $B$ and $C$ are square matrices of order $3$ such that $A = \left[ {\begin{array}{*{20}{c}}   x&0&1 \\    0&y&0 \\    0&0&z  \end{array}} \right]$ and $\left| B \right| = 36$, $\left| C \right| = 4$,  $\left( {x,y,z \in N} \right)$ and $\left| {ABC} \right| = 1152$ then the minimum value of $x + y + z$ is

  • A

    $6$

  • B

    $8$

  • C

    $10$

  • D

    $12$

Similar Questions

The value of $\lambda $ for which the system of equations $2x - y - z = 12,$ $x - 2y + z = - 4,$ $x + y + \lambda z = 4$ has no solution is

  • [IIT 2004]

The determinant $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ is not divisible by

If $\left| {\begin{array}{*{20}{c}}
  {^9{C_4}}&{^9{C_5}}&{^{10}{C_r}} \\ 
  {^{10}{C_6}}&{^{10}{C_7}}&{^{11}{C_{r + 2}}} \\ 
  {^{11}{C_8}}&{^{11}{C_9}}&{^{12}{C_{r + 4}}} 
\end{array}} \right| = 0$ then $r$ is equal to 

The number of real values of $\lambda $ for which the system of linear equations $2x + 4y - \lambda  z = 0$ ;$4x + \lambda y + 2z = 0$ ; $\lambda x + 2y+ 2z = 0$ has infinitely many solutions, is

  • [JEE MAIN 2017]

If $-9 $ is a root of the equation $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$ then the other two roots are

  • [IIT 1983]