- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
normal
If $\alpha ,\beta ,\gamma$ are the roots of $x^3 - x - 2 = 0$, then the value of $\alpha^5 + \beta^5 + \gamma^5$ is-
A
$5$
B
$8$
C
$9$
D
$10$
Solution
$\alpha \,is\,a\,root\, \Rightarrow \,{\alpha ^3} = \,\alpha + 2 $
$ \Rightarrow {\alpha ^5} = {\alpha ^3} + 2{\alpha ^2} = \alpha + 2 + 2{\alpha ^2} $
$ \therefore {\alpha ^5} + {\beta ^5} + {\gamma ^5} = 2({\alpha ^2} + {\beta ^2} + {\gamma ^2}) + ({\alpha ^{}} + \beta + \gamma ) + 6 $
$ = 2(\sum \alpha – 2\sum \alpha \beta ) + \sum \alpha + 6$
$ = 2(0 – 2( – 1)) + 0 + 6 = 10 $
Standard 11
Mathematics