If $\alpha ,\beta ,\gamma$  are the roots of $x^3 - x - 2 = 0$, then the value of $\alpha^5 + \beta^5 + \gamma^5$ is-

  • A

    $5$

  • B

    $8$

  • C

    $9$

  • D

    $10$

Similar Questions

Let $x, y, z$ be non-zero real numbers such that $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ and $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, then $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ is equal to

  • [KVPY 2013]

What is the sum of all natural numbers $n$ such that the product of the digits of $n$ (in base $10$ ) is equal to $n^2-10 n-36 ?$

  • [KVPY 2018]

The number of distinct real roots of the equation $|\mathrm{x}+1||\mathrm{x}+3|-4|\mathrm{x}+2|+5=0$, is ...........

  • [JEE MAIN 2024]

If $\alpha ,\beta ,\gamma $are the roots of the equation ${x^3} + x + 1 = 0$, then the value of ${\alpha ^3}{\beta ^3}{\gamma ^3}$

For the equation $|{x^2}| + |x| - 6 = 0$, the roots are