If $z_1$ is a point on $z\bar{z} = 1$ and $z_2$ is another point on $(4 -3i)z + (4 + 3i)z -15 = 0$, then $|z_1 -z_2|_{min}$ is (where $ i = \sqrt { - 1}$ )

  • A

    $\frac{1}{2}$

  • B

    $2$

  • C

    $\frac{3}{2}$

  • D

    $4$

Similar Questions

For a non-zero complex number $z$, let $\arg ( z )$ denote the principal argument with $-\pi<\arg ( z ) \leq \pi$. Then, which of the following statement (s) is (are) $FALSE$ ?

$(A)$ $\arg (-1- i )=\frac{\pi}{4}$, where $i =\sqrt{-1}$

$(B)$ The function $f: R \rightarrow(-\pi, \pi]$, defined by $f(t)=\arg (-1+i t)$ for all $t \in R$, is continuous at all points of $R$, where $i=\sqrt{-1}$

$(C)$ For any two non-zero complex numbers $z_1$ and $z_2$, $\arg \left(\left(\frac{z_1}{z_2}\right)-\arg \left(z_1\right)+\arg \left(z_2\right)\right.$ is an integer multiple of $2 \pi$.

$(D)$ For any three given distinct complex numbers, $z_1, z_2$ and $z_3$, the locus of the point $z$ satisfying the condition $\arg \left(\frac{\left( z - z _1\right)\left( z _2- z _3\right)}{\left( z - z _3\right)\left( z _2- z _1\right)}\right)=\pi$, lies on a straight line

  • [IIT 2018]

If complex numbers $z_1$, $z_2$ are such that $\left| {{z_1}} \right| = \sqrt 2 ,\left| {{z_2}} \right| = \sqrt 3$ and $\left| {{z_1} + {z_2}} \right| = \sqrt {5 - 2\sqrt 3 }$, then the value of $|Arg z_1 -Arg z_2|$ is

If $\alpha$ and $\beta$ are different complex numbers with $|\beta|=1,$ then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$

Let $z$, $w \in C$ satisfy ${z^2} + \bar w = z$ and ${w^2} + \bar z = w$ then number of ordered pairs of  complex numbers $(z, w)$ is equal to

For the complex number $z$, one from $z + \bar z$ and $z\,\bar z$ is