1.Set Theory
normal

If $A$ and $B$ are any two non empty sets and $A$ is proper subset of $B$. If $n(A) = 4$, then minimum possible value of $n(A \Delta B)$ is (where $\Delta$ denotes symmetric difference of set $A$ and set $B$)

A

$2$

B

$1$

C

$0$

D

$4$

Solution

As $A \subset B \Rightarrow A-B=0$

$B-A \geq 1$

$n(A \Delta B)=n((A-B) \cup(B-A)) \geq 1$

minimum value $=1$

Standard 11
Mathematics

Similar Questions