$A$ અને $B$ એ શુન્યેતર બે ગણ છે અને ગણ $A$ એ ગણ $B$ નો ઉચિત ઉપગણ છે જો $n(A) = 4$, હોય તો $n(A \Delta B)$ ની ન્યૂનતમ કિમત મેળવો. (જ્યાં $\Delta$ એ ગણ $A$ અને ગણ $B$ નો સંમિત તફાવત છે.)
$2$
$1$
$0$
$4$
$A=\{1,2,\{3,4\}, 5\}$ છે. વિધાન સત્ય છે કે અસત્ય છે ? શા માટે ? : $\{ 3,4\} \in A$
ડાબી બાજુએ યાદીની રીતે દર્શાવેલ ગણોને જમણી બાજુએ તેના જ ગુણધર્મની રીતે દર્શાવેલા ગણો સાથે સાંકળો.
$(i)$ $\{1,2,3,6\}$ | $(a)$ $\{ x:x$ એ અવિભાજ્ય સંખ્યા છે અને $6$ નો અવયવ છે. $\} $ |
$(ii)$ $\{2,3\}$ | $(b)$ $\{ x:x$ એ $10$ કરતાં નાની અયુગ્મ પ્રાકૃતિક સંખ્યા છે. $\} $ |
$(iii)$ $\{ M , A , T , H , E , I , C , S \}$ | $(c)$ $\{ x:x$ એ પ્રાકૃતિક સંખ્યા છે અને $6$ નો અવયવ છે. $\} $ |
$(iv)$ $\{1,3,5,7,9\}$ | $(d)$ $\{ x:x$ એ $\mathrm{MATHEMATICS}$ શબ્દનો મૂળાક્ષર છે. $\} $ |
ગણ $\{ (a,\,b):2{a^2} + 3{b^2} = 35,\;a,\,b \in Z\} $ એ . . . ઘટકો ધરાવે છે.
ગણ સાન્ત કે અનંત છે તે નક્કી કરો : $\{ x:x \in N$ અને $(x - 1)(x - 2) = 0\} $
ગણ દર્શાવે છે ? તમારો જવાબ ચકાસો : તમારા વર્ગના બધા જ છોકરાઓનો સમૂહ