${x^2} = xy$ એ . . . . સંબંધ દર્શાવે છે.
સંમિત
સ્વવાચક
પરંપરિત
એકપણ નહીં.
(b) It is obvious.
જો $L$ એ સમતલમાં આવેલ બધીજ રેખા નો ગણ દર્શાવે છે. જો સંબંધ $R =$ {$\alpha R\beta \Leftrightarrow \alpha \bot \beta ,\,\alpha ,\,\beta \in L$} દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . . .
સંબંધ $R$ એ ગણ $A$ પરનો વિસંમિત સંબંધ થવા માટે $(a,\,b) \in R \Rightarrow (b,\,a) \in R$ એ .
જે સ્વવાચક અને સંમિત હોય પરંતુ પરંપરિત ના હોય તેવા એક સંબંધનું ઉદાહરણ આપો
જો $R$ એ $n$ સભ્ય ધરાવતા ગણ $A$ પરનો સામ્ય સંબંધ હોય તો $R$ માં રહેલી કુલ ક્રમયુકત જોડની સંખ્યા . .. . . થાય.
ધારો કે ગણ $A = A _{1} \cup A _{2} \cup \ldots \cup A _{k}$ છે. જ્યાં $i \neq j, 1 \leq i, j \leq k$ માટે $A _{i} \cap A _{i}=\phi$ છે. $A$ થી $A$ પરનો સંબંધ $R$ એ $R =\left\{(x, y): y \in A _{i}\right.$ તો અને તો જ $\left.x \in A _{i}, 1 \leq i \leq k\right\}$ પ્રમાણે વ્યાખ્યાયિત કરો.તો $R$ એ :
Confusing about what to choose? Our team will schedule a demo shortly.