माना $A =\left(\begin{array}{cc}4 & -2 \\ \alpha & \beta\end{array}\right)$ है। यदि $A ^2+\gamma A +18 I =$ $O$ है, तो $\operatorname{det}( A )$ बराबर है

  • [JEE MAIN 2022]
  • A

    $-18$

  • B

    $18$

  • C

    $-50$

  • D

    $50$

Similar Questions

माना एक $A.P.$ के किसी भी तीन भिन्न क्रमागत पदों $\mathrm{a}, \mathrm{b}, \mathrm{c}$ के लिए रेखाएं $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ एक बिंदु $\mathrm{P}$ पर संगामी हैं तथा बिंदु $\mathrm{Q}(\alpha, \beta)$ के लिए समीकरण निकांय $x+y+z=6,2 x+5 y+\alpha z=\beta$ तथा $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=4$, के अंतंत हल है। तो $(\mathrm{PQ})^2$ बराबर है ..........|

  • [JEE MAIN 2024]

यदि $a \ne 6,b,c$ सारणिक $\left| {\,\begin{array}{*{20}{c}}a&{2b}&{2c}\\3&b&c\\4&a&b\end{array}\,} \right| = 0,$ तो $abc = $

समीकरण $\left| {\,\begin{array}{*{20}{c}}0&x&{16}\\x&5&7\\0&9&x\end{array}\,} \right| = 0$ के मूल हैं

रैखिक समीकरण निकाय $\lambda x+2 y+2 z=5$, $2 \lambda x+3 y+5 z=8$, $4 x+\lambda y+6 z=10$

  • [JEE MAIN 2020]

माना $A (1, \alpha), B (\alpha, 0)$ तथा $C (0, \alpha)$ शीर्षो वाले त्रिभुज का क्षेत्रफल $4$ वर्ग इकाई है। यदि बिन्दु $(\alpha,-\alpha),(-\alpha, \alpha)$ तथा $\left(\alpha^2, \beta\right)$ संरेखीय हो, तो $\beta$ का मान होगा

  • [JEE MAIN 2022]