13.Statistics
hard

यदि $50$ प्रेक्षणों $x _{1}, x _{2} \ldots, x _{50}$ का माध्य तथा मानक विचलन दोनों $16$ है, तो $\left(x_{1}-4\right)^{2},\left(x_{2}-4\right)^{2}, \ldots \cdots$ $\left( x _{50}-4\right)^{2}$ का माध्य है

A

$400$

B

$380$

C

$525$

D

$480$

(JEE MAIN-2019)

Solution

Mean $\left( \mu  \right) = \frac{{\sum {{x_i}} }}{{50}} = 16$

Standard deviation $\left( \sigma  \right) = \sqrt {\frac{{\sum {x_i^2} }}{{50}} – {{\left( \mu  \right)}^2}}  = 16$

$ \Rightarrow \left( {256} \right) \times 2 = \frac{{\sum {x_i^2} }}{{50}}$

$\Rightarrow$ New mean

$ = \frac{{\sum {{{\left( {{x_i} – 4} \right)}^2}} }}{{50}} = \frac{{\sum {x_i^2 + 16 \times 50 – 8\sum {{x_i}} } }}{{50}}$

$ = \left( {256} \right) \times 2 + 16 – 8 \times 16 = 400$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.