Gujarati
10-1.Circle and System of Circles
medium

यदि वृत्त ${x^2} + {y^2} + 2ax + c = 0$ तथा ${x^2} + {y^2} + 2by + c = 0$ एक-दूसरे को स्पर्श करते हों तो

A

$\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$

B

$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{{{c^2}}}$

C

$\frac{1}{a} + \frac{1}{b} = {c^2}$

D

$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{c}$

Solution

(d) ${C_1}( – a,\;0);$${C_2}(0,\; – b);$

${R_1}(\sqrt {{a^2} – c} );$  ${R_2}(\sqrt {{b^2} – c} )$

${C_1}{C_2} = \sqrt {{a^2} + {b^2}} $

चूँकि ये एक-दूसरे को स्पर्श करते हैं, अत:

$\sqrt {{a^2} – c}  + \sqrt {{b^2} – c}  = \sqrt {{a^2} + {b^2}} $

$ \Rightarrow {a^2}{b^2} – {b^2}c – {a^2}c$= 0

$\frac{1}{{{a^2}{b^2}c}}\;$ से गुणा करने पर,

$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{c}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.