If complex numbers $z_1$ and $z_2$ both satisfy $z + \overline z  = 2 | z -1 |$ and $arg(z_1 -z_2) = \frac{\pi}{3} ,$ then value of $Im (z_1 + z_2)$ is, where $Im (z)$ denotes imaginary part of $z$ -

  • A

    $\sin \frac{\pi }{3}$

  • B

    $\cos ec \frac{\pi }{3}$

  • C

    $\tan \frac{\pi }{3}$

  • D

    $\cot \frac{\pi }{3}$

Similar Questions

If the set $\left\{\operatorname{Re}\left(\frac{z-\bar{z}+z \bar{z}}{2-3 z+5 \bar{z}}\right): z \in C , \operatorname{Re}(z)=3\right\}$ is equal to the interval $(\alpha, \beta]$, then $24(\beta-\alpha)$ is equal to

  • [JEE MAIN 2023]

The product of two complex numbers each of unit modulus is also a complex number, of

Find the real numbers $x$ and $y$ if $(x-i y)(3+5 i)$ is the conjugate of $-6-24 i$

Let $z,w$be complex numbers such that $\overline z + i\overline w = 0$and $arg\,\,zw = \pi $. Then arg z equals

  • [AIEEE 2004]

If $z_1$ and $z_2$ are two unimodular complex numbers that satisfy $z_1^2 + z_2^2 = 5,$ then ${\left( {{z_1} - {{\bar z}_1}} \right)^2} + {\left( {{z_2} - {{\bar z}_2}} \right)^2}$ is equal to -