નળીમાંથી એકમ આડછેદના ક્ષેત્રફળ અને એકમ સમયમાં પસાર થતાં પ્રવાહીનું દળ $P^x$ અને $v^y$ ના સમપ્રમાણમાં છે જ્યાં $P$ એ દબાણનો તફાવત અને $v$ વેગ છે, તો $x$ અને $y$ વચ્ચેનો સંબધ શું થાય?
$x = y$
$x = -y$
$x = -y^2$
$y = x^2$
આપેલ સૂત્ર $P = El^2m^{-5}G^{-2}$ માં $E$, $l$, $m$ અને $G$ અનુક્રમે ઊર્જા, કોણીય વેગમાન, દ્રવ્યમાન અને ગુરુત્વાકર્ષી અચળાંક છે, તો $P$ એ પરિમાણરહિત રાશિ છે તેમ દર્શાવો.
ઊર્જા $U = \frac{{A\sqrt x }}{{{x^2} + B}},\,$ હોય,તો $AB$ નું પારિમાણીક સૂત્ર
જો પ્રકાશના વેગ $c$, પ્લાન્ક અચળાંક $h$ અને ગુરુત્વાકર્ષી અચળાંક $ G$ ને મૂળભૂત રાશિઓ તરીકે લેવામાં આવે તો દ્રવ્યમાન, લંબાઈ અને સમયને આ ત્રણ રાશિઓમાં દર્શાવતા સૂત્રો મેળવો.
કોઇ પદ્ધતિમાં પ્રકાશનો વેગ $(c)$, ગુરુત્વાકર્ષણ અચળાંક $(G)$ અને પ્લાન્ક અચળાંક $(h)$ ને મૂળભૂત એકમો તરીકે લીધેલા છે. તો આ નવી પદ્ધતિ મુજબ સમયનું પરિમાણિક સૂત્ર શુ થાય?