If domain of function $f(x) = \sqrt {\ln \left( {m\sin x + 4} \right)} $ is $R$ , then number of possible integral values of $m$ is
$3$
$4$
$6$
$7$
The mid-point of the domain of the function $f(x)=\sqrt{4-\sqrt{2 x+5}}$ real $x$ is
The domain of ${\sin ^{ - 1}}({\log _3}x)$ is
If $x \in [0, 1]$, then the number of solution $(s)$ of the equation $2[cos^{-1}x] + 6[sgn(sinx)] = 3$ is (where $[.]$ denotes greatest integer function and sgn $(x)$ denotes signum function of $x$)-
Let $f ^1( x )=\frac{3 x +2}{2 x +3}, x \in R -\left\{\frac{-3}{2}\right\}$ For $n \geq 2$, define $f ^{ n }( x )= f ^1 0 f ^{ n -1}( x )$. If $f ^5( x )=\frac{ ax + b }{ bx + a }, \operatorname{gcd}( a , b )=1$, then $a + b$ is equal to $............$.
The total number of functions,$f:\{1,2,3,4\} \cdot\{1,2,3,4,5,6\}$ such that $f (1)+ f (2)= f (3)$, is equal to .