If each of the observation $x_{1}, x_{2}, \ldots ., x_{n}$ is increased by $'a'$ where $a$ is a negative or positive number, show that the variance remains unchanged.
Let $\bar{x}$ be the mean of $x_{1}, x_{2}, \ldots ., x_{n} .$ Then the variance is given by
$\sigma _1^2 = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \bar x} \right)}^2}} $
If $'a$ is added to each observation, the new observations will be
$y_{i}=x_{i}+a$ .......$(1)$
Let the mean of the new observations be $\bar{y} .$ Then
$\bar y = \frac{1}{n}\sum\limits_{i = 1}^n {{y_i} = \frac{1}{n}} \sum\limits_{i = 1}^n {\left( {{x_i} - a} \right)} $
$ = \frac{1}{n}\left[ {\sum\limits_{i = 1}^n {{x_i}} \sum\limits_{i = 1}^n a } \right] = \frac{1}{n}\sum\limits_{i = 1}^n {{x_i} + \frac{{na}}{n} = } \bar x + a$
i.e. $\bar{y}=\bar{x}+a$ ..........$(2)$
Thus, the variance of the new observations
$\sigma _2^2 = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{y_i} - \bar y} \right)}^2}} = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} + a - \bar x - a} \right)}^2}} $ [ Using $(1)$ and $(2)$ ]
$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} + \bar x} \right)}^2}} = \sigma _1^2$
Thus, the variance of the new observations is same as that of the original observations.
Consider $10$ observation $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$. such that $\sum_{i=1}^{10}\left(x_i-\alpha\right)=2$ and $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$, where $\alpha, \beta$ are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. The $\frac{\beta}{\alpha}$ is equal to :
If the variance of the first $n$ natural numbers is $10$ and the variance of the first m even natural numbers is $16$, then $m + n$ is equal to
Mean and variance of a set of $6$ terms is $11$ and $24$ respectively and the mean and variance of another set of $3$ terms is $14$ and $36$ respectively. Then variance of all $9$ terms is equal to
Find the mean and variance for the data
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |
Calculate the mean, variance and standard deviation for the following distribution:
Class | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
$f_i$ | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |