- Home
- Standard 11
- Mathematics
यदि प्रत्येक प्रेक्षण $x_{1}, x_{2}, \ldots, x_{n}$ को ' $a$ ', से बढ़ाया जाए जहाँ $a$ एक ऋणात्मक या धनात्मक संख्या है, तो दिखाइए कि प्रसरण अपरिवर्तित रहेगा।
Solution
Let $\bar{x}$ be the mean of $x_{1}, x_{2}, \ldots ., x_{n} .$ Then the variance is given by
$\sigma _1^2 = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} – \bar x} \right)}^2}} $
If $'a$ is added to each observation, the new observations will be
$y_{i}=x_{i}+a$ …….$(1)$
Let the mean of the new observations be $\bar{y} .$ Then
$\bar y = \frac{1}{n}\sum\limits_{i = 1}^n {{y_i} = \frac{1}{n}} \sum\limits_{i = 1}^n {\left( {{x_i} – a} \right)} $
$ = \frac{1}{n}\left[ {\sum\limits_{i = 1}^n {{x_i}} \sum\limits_{i = 1}^n a } \right] = \frac{1}{n}\sum\limits_{i = 1}^n {{x_i} + \frac{{na}}{n} = } \bar x + a$
i.e. $\bar{y}=\bar{x}+a$ ……….$(2)$
Thus, the variance of the new observations
$\sigma _2^2 = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{y_i} – \bar y} \right)}^2}} = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} + a – \bar x – a} \right)}^2}} $ [ Using $(1)$ and $(2)$ ]
$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} + \bar x} \right)}^2}} = \sigma _1^2$
Thus, the variance of the new observations is same as that of the original observations.
Similar Questions
निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |
कक्षा $11$ के एक सेक्शन में छात्रों की ऊँचाई तथा भार के लिए निम्नलिखित परिकलन किए गए हैं
ऊँचाई | भार | |
माध्य | $162.6\,cm$ | $52.36\,kg$ |
प्रसरण | $127.69\,c{m^2}$ | $23.1361\,k{g^2}$ |
क्या हम कह सकते हैं कि भारों में ऊँचाई की तुलना में अधिक विचरण है ?