यदि प्रत्येक प्रेक्षण $x_{1}, x_{2}, \ldots, x_{n}$ को ' $a$ ', से बढ़ाया जाए जहाँ $a$ एक ऋणात्मक या धनात्मक संख्या है, तो दिखाइए कि प्रसरण अपरिवर्तित रहेगा।
Let $\bar{x}$ be the mean of $x_{1}, x_{2}, \ldots ., x_{n} .$ Then the variance is given by
$\sigma _1^2 = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \bar x} \right)}^2}} $
If $'a$ is added to each observation, the new observations will be
$y_{i}=x_{i}+a$ .......$(1)$
Let the mean of the new observations be $\bar{y} .$ Then
$\bar y = \frac{1}{n}\sum\limits_{i = 1}^n {{y_i} = \frac{1}{n}} \sum\limits_{i = 1}^n {\left( {{x_i} - a} \right)} $
$ = \frac{1}{n}\left[ {\sum\limits_{i = 1}^n {{x_i}} \sum\limits_{i = 1}^n a } \right] = \frac{1}{n}\sum\limits_{i = 1}^n {{x_i} + \frac{{na}}{n} = } \bar x + a$
i.e. $\bar{y}=\bar{x}+a$ ..........$(2)$
Thus, the variance of the new observations
$\sigma _2^2 = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{y_i} - \bar y} \right)}^2}} = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} + a - \bar x - a} \right)}^2}} $ [ Using $(1)$ and $(2)$ ]
$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} + \bar x} \right)}^2}} = \sigma _1^2$
Thus, the variance of the new observations is same as that of the original observations.
एक समूह के दो नमूनों में से पहले नमूने में $100$ वस्तुएँ हैं जिनका माध्य $15$ तथा मानक विचलन $3$ हैं। यदि पूरे समूह में $250$ वस्तुएँ हैं और उनका माध्य $15.6$ तथा मानक विचलन $\sqrt{13.44}$ हैं, तो दूसरे नमूने का मानक विचलन है
पाँच गणनाओं $1, 2, 3, 4, 5$ का मानक विचलन है
माना बारंबारता बंटन
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
के माध्य तथा प्रसरण क्रमशः $6$ तथा $6.8$ हैं। यदि $x _{3}$ को $8$ से $7$ कर दिया जाए, तो नये आँकड़ों का माध्य होगा
बारंबारता बंटन
चर $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
बारंबारता $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
जहाँ $0 < x _{1} < x _{2} < x _{3} < \ldots < x _{15}=10$ तथा $\sum_{ i =1}^{15} f _{ i }>0$ है, का मानक विचलन, निम्न में से कौन-सा नहीं हो सकता ?
माना $A$ में 5 अवयव है तथा समुच्चय $B$ में भी 5 अवयव हैं। माना समुच्चयों $A$ तथा $B$ के अवयवों के माध्य क्रमशः $5$ तथा $8$ है और समुच्चयों $A$ तथा $\mathrm{B}$ के अवयवों $12$ तथा $20$ है। $\mathrm{A}$ के प्रत्येक अवयव में से $3$ घटा कर तथा $B$ के प्रत्येक अवयव में $2$ जोड़ कर $10$ अवयवों का एक नया समुच्चय $\mathrm{C}$ बनाया जाता है। तो $\mathrm{C}$ के अवयवों के माध्य तथा प्रसरण का योग है :