- Home
- Standard 11
- Mathematics
જો પ્રત્યેક અવલોકન $x_{1}, x_{2}, \ldots ., x_{n}$ માં કોઈ ધન કે ત્રણ સંખ્યા $'a'$ ઉમેરવામાં આવે, તો સાબિત કરો કે વિચરણ બદલાતું નથી.
Solution
Let $\bar{x}$ be the mean of $x_{1}, x_{2}, \ldots ., x_{n} .$ Then the variance is given by
$\sigma _1^2 = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} – \bar x} \right)}^2}} $
If $'a$ is added to each observation, the new observations will be
$y_{i}=x_{i}+a$ …….$(1)$
Let the mean of the new observations be $\bar{y} .$ Then
$\bar y = \frac{1}{n}\sum\limits_{i = 1}^n {{y_i} = \frac{1}{n}} \sum\limits_{i = 1}^n {\left( {{x_i} – a} \right)} $
$ = \frac{1}{n}\left[ {\sum\limits_{i = 1}^n {{x_i}} \sum\limits_{i = 1}^n a } \right] = \frac{1}{n}\sum\limits_{i = 1}^n {{x_i} + \frac{{na}}{n} = } \bar x + a$
i.e. $\bar{y}=\bar{x}+a$ ……….$(2)$
Thus, the variance of the new observations
$\sigma _2^2 = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{y_i} – \bar y} \right)}^2}} = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} + a – \bar x – a} \right)}^2}} $ [ Using $(1)$ and $(2)$ ]
$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} + \bar x} \right)}^2}} = \sigma _1^2$
Thus, the variance of the new observations is same as that of the original observations.
Similar Questions
આવૃતી વિતરણ
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
માં જો મધ્યક અને વિચરણ અનુક્રમે $6$ અને $6.8$ છે. જો $x_{3}$ એ $8$ માંથી $7$ કરવામાં આવે છે તો નવી માહિતીનો મધ્યક મેળવો.