Gujarati
8. Sequences and Series
medium

If every term of a $G.P.$ with positive terms is the sum of its two previous terms, then the common ratio of the series is

A

$1$

B

$\frac{2}{{\sqrt 5 }}$

C

$\frac{{\sqrt 5 - 1}}{2}$

D

$\frac{{\sqrt 5 + 1}}{2}$

Solution

(d) Let first term and common ratio of $G.P.$ are respectively $a$ and $r$,

then under condition,

${T_n} = {T_{n – 1}} + {T_{n – 2}}$

$ \Rightarrow $ $a{r^{n – 1}} = a{r^{n – 2}} + a{r^{n – 3}}$

$ \Rightarrow $ $a{r^{n – 1}} = a{r^{n – 1}}{r^{ – 1}} + a{r^{n – 1}}{r^{ – 2}}$

$ \Rightarrow $ $1 = \frac{1}{r} + \frac{1}{{{r^2}}}$

$ \Rightarrow $ ${r^2} – r – 1 = 0$

$ \Rightarrow $ $r = \frac{{1 \pm \sqrt {1 + 4} }}{2} = \frac{{1 + \sqrt 5 }}{2}$

Taking only $(+)$ sign . $(\because \;r > 1)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.