यदि किसी धनात्मक गुणोत्तर श्रेणी का प्रत्येक पद अपने पूर्व के दो पदों के योग के बराबर है, तो श्रेणी का सार्व-अनुपात होगा
$1$
$\frac{2}{{\sqrt 5 }}$
$\frac{{\sqrt 5 - 1}}{2}$
$\frac{{\sqrt 5 + 1}}{2}$
यदि बहुपद $1+x^2+x^4+x^6+\cdots+x^{22}$ को $1+x+x^2+x^3+\cdots+x^{11}$ से भाग दिया जाए तो शेष क्या हागा
किसी गुणोत्तर श्रेणी का प्रथम पद $1$ है। तीसरे एवं पाँचवें पदों का योग $90$ हो तो गुणोत्तर श्रेणी का सार्व अनुपात ज्ञात कीजिए।
अनुक्रम $\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \ldots \ldots$ के प्रथम $100$ पदों के योगफल से छोटा या बराबर महत्तम पूर्णांक होगा
एक गुणोत्तर श्रेढ़ी $(G.P.)$ के तीसरे तथा चौथे पदों का योग $60$ है तथा इसके प्रथम तीन पदों का गुणनफल $1000$ है। यदि इस गुणोत्तर श्रेढ़ी का प्रथम पद धनात्मक है, तो इसका सातवां पद है
निम्नलिखित श्रेणियों के $n$ पदों का योग ज्ञात कीजिए।
$6+.66+.666+\ldots$