Let $S$ be the sum, $P$ the product and $R$ the sum of reciprocals of $n$ terms in a $G.P.$ Prove that $P ^{2} R ^{n}= S ^{n}$
Let the $G.P.$ be $a, a r, a r^{2}, a r^{3} \ldots . . a r^{n-1}$
According to the given information,
$S=\frac{a\left(r^{n}-1\right)}{r-1}$
$P=a^{n} \times r^{1+2+\ldots+n-1}$
$=a^{n} r^{\frac{n(n-1)}{2}}$ [ $\because $ Sum of first $4n$ natural number is $n \frac{(n+1)}{2}$ ]
$R=\frac{1}{a}+\frac{1}{a r}+\ldots \ldots+\frac{1}{a r^{n-1}}$
$=\frac{r^{n-1}+r^{n-2}+\ldots . r+1}{a r^{n-1}}$
$=\frac{1\left(r^{n}-1\right)}{(r-1)} \times \frac{1}{a r^{n-1}}$ [ $\because $ $1, r, \ldots \ldots r^{n-1}$ forms a $G.P.$ ]
$=\frac{r^{n}-1}{a r^{n-1}(r-1)}$
$\therefore P^{2} R^{n}=a^{2 n} r^{n(n-1)} \frac{\left(r^{n}-1\right)^{n}}{a^{n} r^{n(n-1)}(r-1)^{n}}$
$=\frac{a^{n}\left(r^{n}-1\right)^{n}}{(r-1)^{n}}$
$=\left[\frac{a\left(r^{n}-1\right)}{(r-1)}\right]^{n}$
$=S^{n}$
Hence, $P^{2} R^{n}=S^{n}$
Given $a_1,a_2,a_3.....$ form an increasing geometric progression with common ratio $r$ such that $log_8a_1 + log_8a_2 +.....+ log_8a_{12} = 2014,$ then the number of ordered pairs of integers $(a_1, r)$ is equal to
If ${x_r} = \cos (\pi /{3^r}) - i\sin (\pi /{3^r}),$ (where $i = \sqrt{-1}),$ then value of $x_1.x_2.x_3......\infty ,$ is :-
For $0<\mathrm{c}<\mathrm{b}<\mathrm{a}$, let $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}$ $+(c+a-2 b)=0$ and $\alpha \neq 1$ be one of its root. Then, among the two statements
$(I)$ If $\alpha \in(-1,0)$, then $\mathrm{b}$ cannot be the geometric mean of $\mathrm{a}$ and $\mathrm{c}$
$(II)$ If $\alpha \in(0,1)$, then $\mathrm{b}$ may be the geometric mean of $a$ and $c$
Let ${a_1},{a_2}...,{a_{10}}$ be a $G.P.$ If $\frac{{{a_3}}}{{{a_1}}} = 25,$ then $\frac {{{a_9}}}{{{a_{ 5}}}}$ equal
The sum of first three terms of a $G.P.$ is $\frac{39}{10}$ and their product is $1 .$ Find the common ratio and the terms.