If force $[F],$ acceleration $[A]$ and time $[T]$ are chosen as the fundamental physical quantities. Find the dimensions of energy.
$[\mathrm{F}][\mathrm{A}][\mathrm{T}]$
$[\mathrm{F}][\mathrm{A}]\left[\mathrm{T}^{2}\right]$
$[F][\mathrm{A}]\left[\mathrm{T}^{-1}\right]$
$[\mathrm{F}]\left[\mathrm{A}^{-1}\right][\mathrm{T}]$
Dimensional formula for torque is
A quantity $x$ is given by $\left( IF v^{2} / WL ^{4}\right)$ in terms of moment of inertia $I,$ force $F$, velocity $v$, work $W$ and Length $L$. The dimensional formula for $x$ is same as that of
In Vander Waals equation $\left[ P +\frac{ a }{ V ^{2}}\right][ V - b ]= RT$; $P$ is pressure, $V$ is volume, $R$ is universal gas constant and $T$ is temperature. The ratio of constants $\frac{a}{b}$ is dimensionally equal to .................
What is the dimensions of impedance?
Which of the following physical quantities have the same dimensions?