If force $[F],$ acceleration $[A]$ and time $[T]$ are chosen as the fundamental physical quantities. Find the dimensions of energy.

  • [NEET 2021]
  • A

    $[\mathrm{F}][\mathrm{A}][\mathrm{T}]$

  • B

    $[\mathrm{F}][\mathrm{A}]\left[\mathrm{T}^{2}\right]$

  • C

    $[F][\mathrm{A}]\left[\mathrm{T}^{-1}\right]$

  • D

    $[\mathrm{F}]\left[\mathrm{A}^{-1}\right][\mathrm{T}]$

Similar Questions

Match the following two coloumns

  Column $-I$   Column $-II$
$(A)$ Electrical resistance $(p)$ $M{L^3}{T^{ - 3}}{A^{ - 2}}$
$(B)$ Electrical potential $(q)$ $M{L^2}{T^{ - 3}}{A^{ - 2}}$
$(C)$ Specific resistance $(r)$ $M{L^2}{T^{ - 3}}{A^{ - 1}}$
$(D)$ Specific conductance $(s)$ None of these

In the relation $P = \frac{\alpha }{\beta }{e^{ - \frac{{\alpha Z}}{{k\theta }}}}$ $P$ is pressure, $Z$ is the distance, $k$ is Boltzmann constant and $\theta$ is the temperature. The dimensional formula of $\beta$ will be

  • [IIT 2004]

Given that $\int {{e^{ax}}\left. {dx} \right|}  = {a^m}{e^{ax}} + C$, then which statement is incorrect (Dimension of $x =  L^1$) ?

What is dimensional analysis ? Write limitation of dimensional analysis.

Given that $K =$ energy, $V =$ velocity, $T =$ time. If they are chosen as the fundamental units, then what is dimensional formula for surface tension?