બળ $[F],$ પ્રવેગ $[A]$ અને સમય $[T]$ ને મૂળભૂત ભૌતિક રાશિઓ તરીકે સ્વીકારવામાં આવે છે. ઊર્જાનું પરિમાણ શોધો.
$[\mathrm{F}][\mathrm{A}][\mathrm{T}]$
$[\mathrm{F}][\mathrm{A}]\left[\mathrm{T}^{2}\right]$
$[F][\mathrm{A}]\left[\mathrm{T}^{-1}\right]$
$[\mathrm{F}]\left[\mathrm{A}^{-1}\right][\mathrm{T}]$
$\frac{d y}{d x}=z w \sin \left(w t+\phi_0\right)$ માં $\left(w t+\phi_0\right)$ માટે પરિમાણ સૂત્ર
$ x = Ay + B\tan Cz $ સૂત્રમાં $A,B$ અને $C$ અચળાંક છે.તો નીચેનામાંથી કોના પરિમાણ સમાન ન હોય?
સમીકરણ $X=3 Y Z^{2}$ માં $X$ અને $Z$ એ કેપેસીટન્સ અને ચુંબકીય પ્રેરણ છે તો $MKSQ$ પધ્ધતિમાં $Y$ નું પારિમાણિક સૂત્ર શું થાય?
લિસ્ટ $-I$ | લિસ્ટ $-II$ |
$(a)$ કેપેસીટન્સ, $C$ | $(i)$ ${M}^{1} {L}^{1} {T}^{-3} {A}^{-1}$ |
$(b)$ શૂન્યાવકાશની પરમિટિવિટી, $\varepsilon_{0}$ | $(ii)$ ${M}^{-1} {L}^{-3} {T}^{4} {A}^{2}$ |
$(c)$ શૂન્યાવકાશની પરમીએબીલીટી, $\mu_{0}$ | $(iii)$ ${M}^{-1} L^{-2} T^{4} A^{2}$ |
$(d)$ વિદ્યુતક્ષેત્ર, $E$ | $(iv)$ ${M}^{1} {L}^{1} {T}^{-2} {A}^{-2}$ |