Write the dimensions of $a/b$ in the relation $P = \frac{{a - {t^2}}}{{bx}}$ , where $P$ is pressure, $x$ is the distance and $t$ is the time
${M^{ - 1}}{L^0}{T^{ - 2}}$
${M^1}{L^0}{T^{ - 2}}$
${M^1}{L^0}{T^{ 2}}$
${M^1}{L^1}{T^{ - 2}}$
In terms of potential difference $V$, electric current $I$, permittivity $\varepsilon_0$, permeability $\mu_0$ and speed of light $c$, the dimensionally correct equation$(s)$ is(are)
$(A)$ $\mu_0 I ^2=\varepsilon_0 V ^2$ $(B)$ $\varepsilon_0 I =\mu_0 V$ $(C)$ $I =\varepsilon_0 cV$ $(D)$ $\mu_0 cI =\varepsilon_0 V$
The dimensions of $\frac{\alpha}{\beta}$ in the equation $F=\frac{\alpha-t^2}{\beta v^2}$, where $F$ is the force, $v$ is velocity and $t$ is time, is ..........
The entropy of any system is given by
${S}=\alpha^{2} \beta \ln \left[\frac{\mu {kR}}{J \beta^{2}}+3\right]$
Where $\alpha$ and $\beta$ are the constants. $\mu, J, K$ and $R$ are no. of moles, mechanical equivalent of heat, Boltzmann constant and gas constant repectively. [Take ${S}=\frac{{dQ}}{{T}}$ ]
Choose the incorrect option from the following:
$Assertion$ : Specific gravity of a fluid is a dimensionless quantity.
$Reason$ : It is the ratio of density of fluid to the density of water