सामान्य प्रतीकों के अनुसार समीकरण ${S_t} = u + \frac{1}{2}a(2t - 1)$
स्तम्भ I |
स्तम्भ II |
---|---|
$(i)$ क्यूरी |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ प्रकाश वर्ष |
$(B)$ $M$ |
$(iii)$ परावैद्युत सामथ्र्य |
$(C)$ विमाहीन |
$(iv)$ परमाणु भार |
$(D)$ $T$ |
$(v)$ डेसीबल |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
सही मेल का चुनाव कीजिए
यदि ऊर्जा $(E)$, वेग $(v)$ तथा बल $(F)$ को मूल राशि माना जाए तो द्रव्यमान की विमा क्या होगी
निम्नलिखित में से कौन से समीकरण विमीय रूप से सत्य हैं ?
जहाँ $t =$ समय, $h =$ ऊँचाई, $s =$ पष्ठ तनाव, $\theta=$ कोण, $\rho=$ घनत्व, $a , r =$ त्रिज्या, $g =$ गुरूत्वीय त्वरण, $v =$ आयतन, $p =$ दाब, $W =$ किया गया कार्य, $\Gamma=$ बल आधूर्ण, $\varepsilon=$ विद्युत शीलता, $E =$ विद्युत क्षेत्र, $J =$ धारा घनत्व, $L =$ लंबाई।
$c , G$ तथा $\frac{ e ^{2}}{4 \pi \varepsilon_{0}}$ से बनने वाली एक भौतिक राशि की विमायें वही हैं जो लम्बाई की है। ( जहाँ $c -$ प्रकाश का वेग, $G$ - सार्वत्रिक गुरूत्वीय स्थिरांक तथा $e$ आवेश है $)$ यह भौतिक राशि होगी