एक कण का वेग $v$ (सेमी/सैकण्ड) समय $t$ (सैकण्ड में) के पदों में निम्न सूत्र द्वारा व्यक्त किया गया है $v = at + \frac{b}{{t + c}}$ $a,\,\,b$ व $c$ की विमायें होंगी
$a = {L^2},\,b = T,\,c = L{T^2}$
$a = L{T^2},\,b = LT,\,c = L$
$a = L{T^{ - 2}},\,b = L,\,c = T$
$a = L,\,b = LT,\,c = {T^2}$
किसी ग्रह के लिये कक्षीय वेग निम्न सूत्र द्वारा दिया जाता है $v = {G^a}{M^b}{R^c}$, तब
स्टीफेन-बोल्ट्ज़मैन नियतांक $\sigma$ की विमा को प्लांक स्थिरांक $h$, बोल्ट्ऱ्मैन नियतांक $k_B$ एवं प्रकाश की चाल ' $c$ ' के माध्यम से $\sigma=h^\alpha k_B{ }^\beta c^\gamma$ के रूप में व्यक्त किया जा सकता है। यहाँ
निम्नलिखित में से कौन सी राशि विमा विहीन है?
जल तरंगों का संचरण वेग $v$ उसके तरंगदैध्र्य $\lambda ,$ जल के घनत्व $\rho $ तथा गुरुत्वीय त्वरण $g$ पर निर्भर करता है। विमीय विधि द्वारा इन राशियों में सम्बन्ध होगा