एक कण का वेग $v$ (सेमी/सैकण्ड) समय $t$ (सैकण्ड में) के पदों में निम्न सूत्र द्वारा व्यक्त किया गया है $v = at + \frac{b}{{t + c}}$ $a,\,\,b$ व $c$ की विमायें होंगी

  • [AIPMT 2006]
  • A

    $a = {L^2},\,b = T,\,c = L{T^2}$

  • B

    $a = L{T^2},\,b = LT,\,c = L$

  • C

    $a = L{T^{ - 2}},\,b = L,\,c = T$

  • D

    $a = L,\,b = LT,\,c = {T^2}$

Similar Questions

यदि समय $(t)$, वेग $(v)$, और कोणीय संवेग $(l)$ को मूल मात्रकों के रूप में लिया गया है, तब $t, v$ और $l$ के पदों में द्रव्यमान $( m )$ की विमाएं होंगी।

  • [JEE MAIN 2021]

यदि बल $( F )$, वेग $( v )$ तथा समय $( T )$ को मूल मात्रक मान लिया जायेतो, द्रव्यमान की विमायें होंगी

  • [AIPMT 2014]

यदि $E , L , M$ तथा $G$ क्रमशः ऊर्जा, कोणीय संवेग, द्रव्यमान तथा गुरूत्वाकर्षण नियतांक को प्रदर्शित करते हों, तो सूत्र $P = EL ^{2} M ^{-5} G ^{-2}$ में $P$ की विमा होगी।

  • [JEE MAIN 2021]

ऊष्मा या ऊर्जा का मात्रक कैलोरी है और यह लगभग $4.2\, J$ के बराबर है, जहां $1\, J =1\, kg\, m ^{2} s ^{-2}$ मान लीजिए कि हम मात्रकों की कोई ऐसी प्रणाली उपयोग करते हैं जिससे द्रव्यमान का मात्रक $\alpha\, kg$ के बराबर है, लंबाई का मात्रक $\beta m$ के बराबर है, समय का मात्रक $\gamma s$ के बराबर है । यह प्रदर्शित कीजिए कि नए मात्रकों के पदों में कैलोरी का परिमाण $4.2 \alpha^{-1} \beta^{-2} \gamma^{2}$ है ।

समीकरण $W = \frac{1}{2}K{x^2}$ में $K$ की विमा होगी