यदि $E , L , M$ तथा $G$ क्रमशः ऊर्जा, कोणीय संवेग, द्रव्यमान तथा गुरूत्वाकर्षण नियतांक को प्रदर्शित करते हों, तो सूत्र $P = EL ^{2} M ^{-5} G ^{-2}$ में $P$ की विमा होगी।

  • [JEE MAIN 2021]
  • A

    $\left[{M}^{0} {L}^{1} {T}^{0}\right]$

  • B

    $\left[{M}^{-1} {L}^{-1} {T}^{2}\right]$

  • C

    $\left[{M}^{1} {L}^{1} {T}^{-2}\right]$

  • D

    $\left[{M}^{0} {L}^{0} {T}^{0}\right]$

Similar Questions

एक भौतिक राशि $\vec{S}$ को $\vec{S}=(\vec{E} \times \vec{B}) / \mu_0$ से परिभाषित किया जाता है, जहाँ $\vec{E}$ विद्युत क्षेत्र (electric field), $\vec{B}$ चुम्बकीय क्षेत्र (magnetic field) और $\mu_0$ निर्वात की चुबंकशीलता (permeability of free space) है। निम्न में से किसकी (किनकी) विमाएँ $\vec{S}$ की विमाओं के समान है?

$(A)$ $\frac{\text { Energy }}{\text { charge } \times \text { current }}$

$(B)$ $\frac{\text { Force }}{\text { Length } \times \text { Time }}$

$(C)$ $\frac{\text { Energy }}{\text { Volume }}$

$(D)$ $\frac{\text { Power }}{\text { Area }}$

  • [IIT 2021]

एक दृढ़ घन $A$ का द्रव्यमान $M$ एवं इसकी प्रत्येक भुजा की लम्बाई $L$ है, यह एकसमान विमा के, दूसरे कम दृढ़ता गुणांक $(\eta )$ वाले घन $ B$ के ऊपर इस प्रकार से स्थित है कि $A$ का निचला पृष्ठ $B$ के ऊपरी पृष्ठ को पूरी तरह ढ़क लेता है। $B$ की निचली सतह दृढ़ता से क्षैतिज सतह पर स्थित है। एक अल्प परिमाण का बल $F,\,A$ की एक सतह पर लम्बवत् लगाया जाता है। बल को हटाने पर $A$ छोटे दोलन करने लगता है जिसका आवर्तकाल दिया जाता है

  • [IIT 1992]

एक तरंग का समीकरण, $Y = A\sin \omega \left( {\frac{x}{v} - K} \right)$ से दिया जाता है। जहाँ $\omega $ कोणीय वेग तथा $v$ रेखीय वेग है। $K$ की विमा है

समीकरण $P = \frac{{a - {t^2}}}{{bx}}$ में $P$ दाब, $x$ दूरी तथा $t$ समय है तब $\frac{a}{b}$ की विमा होगी

यदि बल $( F )$, लम्बाई $( L )$ तथा समय $( T )$ मूल राशियाँ हैं तब घनत्व की विमा क्या होगी ?

  • [JEE MAIN 2021]