सूची $I$ को सूची $II$ से सुमेलित कीजिए और सूचियों के नीचे दिये गये कोड का प्रयोग करके सही उत्तर चुनिये :
सूची $I$ | सूची $II$ |
$P.$बोल्ट्समान नियतांक | $1.$ $\left[ ML ^2 T ^{-1}\right]$ |
$Q.$ श्यानता गुणांक | $2.$ $\left[ ML ^{-1} T ^{-1}\right]$ |
$R.$ प्लांक नियतांक | $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$ |
$S.$ ऊष्माता चालक | $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$ |
Codes: $ \quad \quad P \quad Q \quad R \quad S $
$r$ त्रिज्या एवं $l$ लम्बाई की एक नली जिसके सिरे पर दाबान्तर $p$ है, से $\eta $ श्यानता का द्रव बह रहा है, तब प्रति सैकण्ड बहने वाले द्रव के आयतन $V$ के लिये विमीय रुप के संगत सम्बन्ध है
विमीय विश्लेषण की नींव किसके द्वारा रखी गयी
एक राशि $f$ का सूत्र $f =\sqrt{\frac{ hc ^{5}}{ G }}$ है। यहाँ पर $c$ प्रकाश की गति $G$ सर्वव्यापी गुरूत्वाकर्षण स्थिरांक तथा $h$ प्लांक स्थिरांक है। $f$ की विमाएँ निम्न में से किसके समान है ?
नीचे दो कथन दिए गए हैं : इनमें से एक 'अभिकथन (A)' द्वारा एवं दूसरा 'कारण (R)' द्वारा निरूपित है।
अभिकथन $(A)$ : किसी द्रव की बूँद के दोलन का आवर्तकाल, पृष्ठ तनाव $( S )$ पर निर्भर करता है। यदि द्रव का घनत्व $\rho$ एवं बूँद की त्रिज्या $r$ तो $T$ $= k \sqrt{ pr ^3 / s }$ विमाओं के अनुसार सही है। जहाँ $K$ विमाविहीन है।
कारण $(R)$ : विमीय विश्लेषण करने पर, हमें $R.H.S.$ (दाहिनी हाथ की तरफ) पर, समय की विमा से अलग विमा प्राप्त होती है।
उपरोक्त कथनों के आधार पर, नीचे दिए गए विकल्पों में से सही उत्तर चुनें