वांडर वॉल समीकरण $\left[ P +\frac{ a }{ V ^2}\right][ V - b ]= RT$; में $P$ दाब है, $V$ आयतन है, $R$ सर्वत्रिक गैस नियतांक है एवं $T$ तापमान है। नियतांक का अनुपात $\frac{ a }{ b }$ विमीय रूप से किसके समान है ?
$\frac{P}{V}$
$\frac{ V }{ P }$
$PV$
$PV ^{3}$
मुक्त रुप से गिरती हुई वस्तु का वेग ${g^p}{h^q}$ से परिवर्तित होता है, जहाँ $g$ गुरुत्वीय त्वरण तथा $h$ ऊँचाई है, तो $p$ और $q$ के मान होंगें
राशियाँ $A$ और $B$ सूत्र $m = A/B$ से सम्बन्धित हैं। यहाँ पर $m = $ रैखिक घनत्व तथा $A$ बल को प्रदर्शित कर रहा है। $B$ की विमायें होंगी
सूची $I$ का सूची $II$ से मिलान करें।
सूची $I$ | सूची $II$ |
$A$. स्प्रिंग नियतांक | $I$.$\left(\mathrm{T}^{-1}\right)$ |
$B$. कोणीय चाल | $II$.$\left(\mathrm{MT}^{-2}\right)$ |
$C$. कोणीय संवेग | $III$.$\left(\mathrm{ML}^2\right)$ |
$D$.जड़त्वाघूर्ण | $IV$. $\left(\mathrm{ML}^2 \mathrm{~T}^{-1}\right)$ |
नीचे दिए गए विकल्पों में से सही उत्तर चुनें:
यदि प्रकाश वेग $(c)$, सार्वत्रिक गुरुत्वाकर्षण नियतांक $[G]$, प्लांक नियतांक $[h]$ को मूल मात्रकों की तरह प्रयुक्त किया जाये तब इस नयी पद्धति में समय की विमा होगी
यदि बल $( F )$, लम्बाई $( L )$ तथा समय $( T )$ मूल राशियाँ हैं तब घनत्व की विमा क्या होगी ?