If force $(F)$, length $(L)  $ and time $(T)$ are assumed to be fundamental units, then the dimensional formula of the mass will be

  • A

    $F{L^{ - 1}}{T^2}$

  • B

    $F{L^{ - 1}}{T^{ - 2}}$

  • C

    $F{L^{ - 1}}{T^{ - 1}}$

  • D

    $F{L^2}{T^2}$

Similar Questions

Match List $I$ with List $II$ and select the correct answer using the codes given below the lists :

List $I$ List $II$
$P.$ Boltzmann constant $1.$ $\left[ ML ^2 T ^{-1}\right]$
$Q.$ Coefficient of viscosity $2.$ $\left[ ML ^{-1} T ^{-1}\right]$
$R.$ Planck constant $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$
$S.$ Thermal conductivity $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$

Codes: $ \quad \quad P \quad Q \quad R \quad S $ 

  • [IIT 2013]

If force $[F],$ acceleration $[A]$ and time $[T]$ are chosen as the fundamental physical quantities. Find the dimensions of energy.

  • [NEET 2021]

Force $F$ is given in terms of time $t$ and distance $x$ by $F = a\, sin\, ct + b\, cos\, dx$, then the dimension of $a/b$ is

If the dimensions of length are expressed as ${G^x}{c^y}{h^z}$; where $G,\,c$ and $h$ are the universal gravitational constant, speed of light and Planck's constant respectively, then

  • [IIT 1992]

A liquid drop placed on a horizontal plane has a near spherical shape (slightly flattened due to gravity). Let $R$ be the radius of its largest horizontal section. A small disturbance causes the drop to vibrate with frequency $v$ about its equilibrium shape. By dimensional analysis, the ratio $\frac{v}{\sqrt{\sigma / \rho R^3}}$ can be (Here, $\sigma$ is surface tension, $\rho$ is density, $g$ is acceleration due to gravity and $k$ is an arbitrary dimensionless constant)

  • [KVPY 2012]