If force $(F)$, length $(L)  $ and time $(T)$ are assumed to be fundamental units, then the dimensional formula of the mass will be

  • A

    $F{L^{ - 1}}{T^2}$

  • B

    $F{L^{ - 1}}{T^{ - 2}}$

  • C

    $F{L^{ - 1}}{T^{ - 1}}$

  • D

    $F{L^2}{T^2}$

Similar Questions

What is the dimensional formula of $a b^{-1}$ in the equation $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$, where letters have their usual meaning.

  • [JEE MAIN 2024]

A book with many printing errors contains four different formulas for the displacement $y$ of a particle undergoing a certain periodic motion:

$(a)\;y=a \sin \left(\frac{2 \pi t}{T}\right)$

$(b)\;y=a \sin v t$

$(c)\;y=\left(\frac{a}{T}\right) \sin \frac{t}{a}$

$(d)\;y=(a \sqrt{2})\left(\sin \frac{2 \pi t}{T}+\cos \frac{2 \pi t}{T}\right)$

$(a=$ maximum displacement of the particle, $v=$ speed of the particle. $T=$ time-period of motion). Rule out the wrong formulas on dimensional grounds.

Young-Laplace law states that the excess pressure inside a soap bubble of radius $R$ is given by $\Delta P=4 \sigma / R$, where $\sigma$ is the coefficient of surface tension of the soap. The EOTVOS number $E_0$ is a dimensionless number that is used to describe the shape of bubbles rising through a surrounding fluid. It is a combination of $g$, the acceleration due to gravity $\rho$ the density of the surrounding fluid $\sigma$ and a characteristic length scale $L$ which could be the radius of the bubble. A possible expression for $E_0$ is 

  • [KVPY 2013]

If force $F$ , velocity $V$ and time $T$ are taken as fundamental units then dimension of force in the pressure is

Which of the following equations is dimensionally incorrect?

Where $t=$ time, $h=$ height, $s=$ surface tension, $\theta=$ angle, $\rho=$ density, $a, r=$ radius, $g=$ acceleration due to gravity, ${v}=$ volume, ${p}=$ pressure, ${W}=$ work done, $\Gamma=$ torque, $\varepsilon=$ permittivity, ${E}=$ electric field, ${J}=$ current density, ${L}=$ length.

  • [JEE MAIN 2021]