माना कि $E$ व $F$ दो स्वतंत्र घटनायें हैं $E$ व $F$ दोनों के घटने की प्रायिकता $\frac{1}{{12}}$ है तथा "न तो $E$ और न $F$" से घटने की प्रायिकता $\frac{1}{2}$ है, तो

  • [IIT 1993]
  • A

    $P\,(E) = \frac{1}{3},\,\,P\,(F) = \frac{1}{4}$

  • B

    $P\,(E) = \frac{1}{2},\,\,P\,(F) = \frac{1}{6}$

  • C

    $P\,(E) = \frac{1}{6},\,\,P\,(F) = \frac{1}{2}$

  • D

    इनमें से कोई नहीं

Similar Questions

एक छात्र की गणित, भौतिकी, रसायन शास्त्र में उत्तीर्ण होने की प्रायिकतायें क्रमश: $m, p$ तथा $c$ हैं। इन विषयों में से इस छात्र के कम से कम एक विषय में पास होने की सम्भावना $75\%$ है, कम से कम दो विषयों में पास होने की $50\%$ और केवल दो ही विषयों में पास होने की सम्भावना $40\%$ हैं। निम्नलिखित में से कौन-कौन से सम्बन्ध सत्य हैं

  • [IIT 1999]

किसी प्रतिदर्श समष्टि में दो घटनाओं $A$ और $B$ के लिए

  • [IIT 1991]

यदि $P(A) = 2/3$, $P(B) = 1/2$ तथा ${\rm{ }}P(A \cup B) = 5/6$ तब घटनायें $A$ तथा $B$ हैं

यदि दो घटनाओं में $P(A \cup B) = 5/6$, $P({A^c}) = 5/6$, $P(B) = 2/3,$ तब $A$ तथा $B$ होंगी

किसी घटना के प्रतिकूल संयोगानुपात $6 : 5$ हैं, तो उस घटना के घटित न होने की प्रायिकता है