यदि किसी अनंत गुणोत्तर श्रेणी का प्रथम पद, शेष पदों के योग के दो गुने के बराबर हो, तो श्रेणी का सार्वानुपात होगा
$1$
$2$
$1/3$
$-1/3$
माना $a_{1}, a_{2}, a_{3}, \ldots$ गुणोत्तर श्रेणी इस प्रकार है कि $a_{1}<0, a_{1}+a_{2}=4$ तथा $a_{3}+a_{4}=16$. यदि $\sum_{i=1}^{9} a_{i}=4 \lambda$ है, तो $\lambda$ बराबर है
अनन्त गुणोत्तर श्रेणी का प्रथम पद $x$ और उसका योग $5$ है, तब
यदि किसी गुणोत्तर श्रेणी के तीन पदों का योग $19$ एवं गुणनफल $216$ हो, तो श्रेणी का सार्व-अनुपात होगा
गुणोत्तर श्रेणी $5, - \frac{5}{2},\frac{5}{4}, - \frac{5}{8},...$ का $n$ वाँ पद$\frac{5}{{1024}}$ हो, तो $n$ का मान होगा
यदि किसी गुणोत्तर श्रेणी का $5$ वाँ पद $\frac{1}{3}$हो एवं $9$ वाँ पद $\frac{{16}}{{243}}$ हो, तो चौथा पद होगा