If in the expansion of ${(1 + x)^{21}}$, the coefficients of ${x^r}$ and ${x^{r + 1}}$ be equal, then $r$ is equal to

  • A

    $9$

  • B

    $10$

  • C

    $11$

  • D

    $12$

Similar Questions

The positive value of $a$ so that the co-efficient of $x^5$ is equal to that of $x^{15}$ in the expansion of ${\left( {{x^2}\,\, + \,\,\frac{a}{{{x^3}}}} \right)^{10}}$ is

The greatest coefficient in the expansion of ${(1 + x)^{2n + 2}}$ is

In the expansion of ${\left( {{x^2} - 2x} \right)^{10}}$, the coefficient of ${x^{16}}$ is

The number of integral terms in the expansion of ${\left( {\sqrt 3 + \sqrt[8]{5}} \right)^{256}}$ is

  • [AIEEE 2003]

Show that the middle term in the expansion of $(1+x)^{2 n}$ is
$\frac{1.3 .5 \ldots(2 n-1)}{n !} 2 n\, x^{n},$ where $n$ is a positive integer.