The area enclosed within the curve $|x| + |y| = 1$ is
$\sqrt 2 $
$1$
$\sqrt 3 $
$2$
The co-ordinates of three points $A(-4, 0) ; B(2, 1)$ and $C(3, 1)$ determine the vertices of an equilateral trapezium $ABCD$ . The co-ordinates of the vertex $D$ are :
The origin and the points where the line $L_1$ intersect the $x$ -axis and $y$ -axis are vertices of right angled triangle $T$ whose area is $8$. Also the line $L_1$ is perpendicular to line $L_2$ : $4x -y = 3$, then perimeter of triangle $T$ is -
If in a parallelogram $ABDC$, the coordinates of $A, B$ and $C$ are respectively $(1, 2), (3, 4)$ and $(2, 5)$, then the equation of the diagonal $AD$ is
If the line $3x + 3y -24 = 0$ intersects the $x-$ axis at the point $A$ and the $y-$ axis at the point $B$, then the incentre of the triangle $OAB$, where $O$ is the origin, is
Let $A B C$ be an isosceles triangle in which $A$ is at $(-1,0), \angle A=\frac{2 \pi}{3}, A B=A C$ and $B$ is on the positive $\mathrm{x}$-axis. If $\mathrm{BC}=4 \sqrt{3}$ and the line $\mathrm{BC}$ intersects the line $y=x+3$ at $(\alpha, \beta)$, then $\frac{\beta^4}{\alpha^2}$ is :